WESLEY COLLEGE By daring & by doing	
by daring & by doing	

YEAR 12 MATHEMATICS METHODS

SEMESTER ONE 2018

TEST 4: ANTIDIFFERENTIATION, APPLICATIONS OF CALCULUS AND FUNDAMENTAL THEOREM OF CALCULUS

Thursday 24 May	Name:					
Time: 45 minutes	Part A:	Part B : <u></u> 16	Total:	%		
 Answer all questions neatly in the spaces provided. Show all working. 						

• You are permitted to use the Formula Sheet for both sections, and an A4 page of notes, plus up to 3 permitted calculators in the Calculator Allowed section.

Calculator Free

1. [6 marks]

Determine the anti-derivative of

a) $(4-3x)^2$

b)
$$5x^4 - \frac{9}{\sqrt{x}}$$

[2]

[2]

c) $\frac{10x}{x^2+5}$

[2]

2. [4 marks]

Determine the following, simplyfying your answers:

a)
$$\int \frac{1-x^3}{x^2} dx$$

b)
$$\frac{d}{dx} \left(\int_x^7 \frac{2t}{t^2 - 5} dt \right)$$

[2]

[2]

3. [3 marks]

Let the graph of f(x) between x = 1 and x = 6 be as shown.

Evaluate $\int_1^6 f(x) \, dx$.

[3]

4. [7 marks]

A particle P moves in a straight horizontal line such that its acceleration at time t seconds is given by a = k(2t - 5), where k is a positive constant.

Given that at time t = 0, P is at rest at the origin and that at time t = 6, its velocity is $1.5 m s^{-1}$,

a) find the acceleration of *P* in terms of *t*.

b) show that the displacement of the particle, *x* metres, from *O* at time *t* is given by

$$x = \frac{1}{24}t^2(2t - 15)$$

5. [4 marks]

Use $\int_{-2}^{4} f(x) dx = 8$ and $\int_{-2}^{1} f(x) dx = 1$ to evaluate the following:

a)
$$\int_{-2}^{4} -5f(x) \, dx$$

[1] b)
$$\int_{1}^{4} f(x) dx$$

[1] c)
$$\int_{-2}^{4} [f(x) - 2x] dx$$

6. [3 marks]

The rate of flow of a liquid into a container is given by $\frac{dV}{dt} = e^{0.5t}$, where V is the volume in cubic centimetres and t is the time in seconds.

Find the volume of liquid in the container after 3 seconds if the container intially holds 10 cm³.

Resourced

7. [5 marks]

- a) Find $\frac{dy}{dx}$ given $y = x . \sin x$
- b) Use your answer to part (a) to find $\int (x \cdot \cos x) dx$

[3]

[2]

8. [6 marks]

The velocity of a body moving along a straight line is given by $v = -3t^2 - 2t + 5$ m/s where t is the time in seconds. The initial displacement of the body from a fixed point O is 3 metres.

NAME: _____

- a) Find the displacement of the body when t = 5.
- b) Find the instantaneous speed at t = 5 seconds
- c) What is the average speed of the body over the first 5 seconds?

[2]

[1]

(16 marks)

9. [5 marks]

A sketch of the curve C with equation $y = 3x - 4\sqrt{x} + 2$ has been given below.

a) Using the tanLine command, or otherwise, determine the equation of the tangent, which has x-coordinate 4.
 Draw the tangent on the sketch.

b) Write down the integral(s) that will determine the area of the region captured by *C*, the tangent to *C* at *A* and the positive coordinate axes and state the area.

[2]